Smart Cellulose Fibers Coated with Carbon Nanotube Networks
نویسندگان
چکیده
Smart multi-walled carbon nanotube (MWCNT)-coated cellulose fibers with a unique sensing ability were manufactured by a simple dip coating process. The formation of electrically-conducting MWCNT networks on cellulose monoand multi-filament fiber surfaces was confirmed by electrical resistance measurements and visualized by scanning electron microscopy. The interaction between MWCNT networks and cellulose fiber was investigated by Raman spectroscopy. The piezoresistivity of these fibers for strain sensing was investigated. The MWCNT-coated cellulose fibers exhibited a unique linear strain-dependent electrical resistance change up to 18% strain, with good reversibility and repeatability. In addition, the sensing behavior of these fibers to volatile molecules (including vapors of methanol, ethanol, acetone, chloroform and tetrahydrofuran) was investigated. The results revealed a rapid response, high sensitivity and good reproducibility for these chemical vapors. Besides, they showed good selectivity to different vapors. It is suggested that the intrinsic physical and chemical features of cellulose fiber, well-formed MWCNT networks and favorable MWCNT-cellulose interaction caused the unique and excellent sensing ability of the MWCNT-coated cellulose fibers, which have the potential to be used as smart materials.
منابع مشابه
A Procedure for Preparation of Semi-activated Carbon Fiber without any Treatment under High Temperature
A procedure for preparation of semi-activated carbon fiber (SACF) without any treatment under high temperature was proposed. The first step of the procedure is coating of an inorganic fiber (E-glass fiber) by an adsorbent mixture including powder activated carbon, methyl cellulose and water. In this work a set of experiments was performed to attain appropriate adsorbent mixture for good quality...
متن کاملConductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose.
Core-sheath multiwalled carbon nanotube (MWNT)-cellulose fibers of diameters from several hundreds of nanometers to several micrometers were prepared by coaxial electrospinning from a nonvolatile, nonflammable ionic liquid (IL) solvent, 1-methyl-3-methylimidazolium acetate ([EMIM][Ac]). MWNTs were dispersed in IL to form a gel solution. This gel core solution was electrospun surrounded by a she...
متن کاملAlter the sheet resistance of carbon nanotube coated cellulose fabric with argon plasma pretreatment
Cellulose fabrics were coated with single walled carbon nanotubes (SWCNTs) by a dip-drying process. Scanning electron microscopy (SEM) and Raman spectroscopy analyses indicate the attachment of SWCNTs. The sheet resistance of SWCNT coated fabrics can be altered by modifying the raw cellulose fabrics with low pressure argon plasma. An initial plasma ablation of up to 3 min results in the decreas...
متن کاملTHE STUDY OF ELECTROLESS COATING OF NICKEL ON CARBON FIBERS
The continuity and thickness of the coating layer, are the most important factors in wetting properties and strength of carbon fibers. These factors are crucial in the quality of metal matrix composites made with carbon fibers. In this research the Polyacrylonitrail base carbon fibers have been nickel coated with 0.2, 0.5, 0.8 and 11 ,u in thickness, by the electroless method. The effect of the...
متن کاملSupercapacitance from Cellulose and Carbon Nanotube Nanocomposite Fibers
Multiwalled carbon nanotube (MWNT)/cellulose composite nanofibers have been prepared by electrospinning a MWNT/cellulose acetate blend solution followed by deacetylation. These composite nanofibers were then used as precursors for carbon nanofibers (CNFs). The effect of nanotubes on the stabilization of the precursor and microstructure of the resultant CNFs were investigated using thermogravime...
متن کامل